3.628 \(\int \frac{1}{(c x)^{7/2} (a+b x^2)^{3/2}} \, dx\)

Optimal. Leaf size=331 \[ -\frac{21 b^{5/4} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right ),\frac{1}{2}\right )}{10 a^{11/4} c^{7/2} \sqrt{a+b x^2}}-\frac{21 b^{3/2} \sqrt{c x} \sqrt{a+b x^2}}{5 a^3 c^4 \left (\sqrt{a}+\sqrt{b} x\right )}+\frac{21 b^{5/4} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{5 a^{11/4} c^{7/2} \sqrt{a+b x^2}}+\frac{21 b \sqrt{a+b x^2}}{5 a^3 c^3 \sqrt{c x}}-\frac{7 \sqrt{a+b x^2}}{5 a^2 c (c x)^{5/2}}+\frac{1}{a c (c x)^{5/2} \sqrt{a+b x^2}} \]

[Out]

1/(a*c*(c*x)^(5/2)*Sqrt[a + b*x^2]) - (7*Sqrt[a + b*x^2])/(5*a^2*c*(c*x)^(5/2)) + (21*b*Sqrt[a + b*x^2])/(5*a^
3*c^3*Sqrt[c*x]) - (21*b^(3/2)*Sqrt[c*x]*Sqrt[a + b*x^2])/(5*a^3*c^4*(Sqrt[a] + Sqrt[b]*x)) + (21*b^(5/4)*(Sqr
t[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sq
rt[c])], 1/2])/(5*a^(11/4)*c^(7/2)*Sqrt[a + b*x^2]) - (21*b^(5/4)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt
[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(10*a^(11/4)*c^(7/2)*Sqrt
[a + b*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.254267, antiderivative size = 331, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.316, Rules used = {290, 325, 329, 305, 220, 1196} \[ -\frac{21 b^{3/2} \sqrt{c x} \sqrt{a+b x^2}}{5 a^3 c^4 \left (\sqrt{a}+\sqrt{b} x\right )}-\frac{21 b^{5/4} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{10 a^{11/4} c^{7/2} \sqrt{a+b x^2}}+\frac{21 b^{5/4} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{5 a^{11/4} c^{7/2} \sqrt{a+b x^2}}+\frac{21 b \sqrt{a+b x^2}}{5 a^3 c^3 \sqrt{c x}}-\frac{7 \sqrt{a+b x^2}}{5 a^2 c (c x)^{5/2}}+\frac{1}{a c (c x)^{5/2} \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((c*x)^(7/2)*(a + b*x^2)^(3/2)),x]

[Out]

1/(a*c*(c*x)^(5/2)*Sqrt[a + b*x^2]) - (7*Sqrt[a + b*x^2])/(5*a^2*c*(c*x)^(5/2)) + (21*b*Sqrt[a + b*x^2])/(5*a^
3*c^3*Sqrt[c*x]) - (21*b^(3/2)*Sqrt[c*x]*Sqrt[a + b*x^2])/(5*a^3*c^4*(Sqrt[a] + Sqrt[b]*x)) + (21*b^(5/4)*(Sqr
t[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sq
rt[c])], 1/2])/(5*a^(11/4)*c^(7/2)*Sqrt[a + b*x^2]) - (21*b^(5/4)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt
[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(10*a^(11/4)*c^(7/2)*Sqrt
[a + b*x^2])

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{1}{(c x)^{7/2} \left (a+b x^2\right )^{3/2}} \, dx &=\frac{1}{a c (c x)^{5/2} \sqrt{a+b x^2}}+\frac{7 \int \frac{1}{(c x)^{7/2} \sqrt{a+b x^2}} \, dx}{2 a}\\ &=\frac{1}{a c (c x)^{5/2} \sqrt{a+b x^2}}-\frac{7 \sqrt{a+b x^2}}{5 a^2 c (c x)^{5/2}}-\frac{(21 b) \int \frac{1}{(c x)^{3/2} \sqrt{a+b x^2}} \, dx}{10 a^2 c^2}\\ &=\frac{1}{a c (c x)^{5/2} \sqrt{a+b x^2}}-\frac{7 \sqrt{a+b x^2}}{5 a^2 c (c x)^{5/2}}+\frac{21 b \sqrt{a+b x^2}}{5 a^3 c^3 \sqrt{c x}}-\frac{\left (21 b^2\right ) \int \frac{\sqrt{c x}}{\sqrt{a+b x^2}} \, dx}{10 a^3 c^4}\\ &=\frac{1}{a c (c x)^{5/2} \sqrt{a+b x^2}}-\frac{7 \sqrt{a+b x^2}}{5 a^2 c (c x)^{5/2}}+\frac{21 b \sqrt{a+b x^2}}{5 a^3 c^3 \sqrt{c x}}-\frac{\left (21 b^2\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{a+\frac{b x^4}{c^2}}} \, dx,x,\sqrt{c x}\right )}{5 a^3 c^5}\\ &=\frac{1}{a c (c x)^{5/2} \sqrt{a+b x^2}}-\frac{7 \sqrt{a+b x^2}}{5 a^2 c (c x)^{5/2}}+\frac{21 b \sqrt{a+b x^2}}{5 a^3 c^3 \sqrt{c x}}-\frac{\left (21 b^{3/2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+\frac{b x^4}{c^2}}} \, dx,x,\sqrt{c x}\right )}{5 a^{5/2} c^4}+\frac{\left (21 b^{3/2}\right ) \operatorname{Subst}\left (\int \frac{1-\frac{\sqrt{b} x^2}{\sqrt{a} c}}{\sqrt{a+\frac{b x^4}{c^2}}} \, dx,x,\sqrt{c x}\right )}{5 a^{5/2} c^4}\\ &=\frac{1}{a c (c x)^{5/2} \sqrt{a+b x^2}}-\frac{7 \sqrt{a+b x^2}}{5 a^2 c (c x)^{5/2}}+\frac{21 b \sqrt{a+b x^2}}{5 a^3 c^3 \sqrt{c x}}-\frac{21 b^{3/2} \sqrt{c x} \sqrt{a+b x^2}}{5 a^3 c^4 \left (\sqrt{a}+\sqrt{b} x\right )}+\frac{21 b^{5/4} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{5 a^{11/4} c^{7/2} \sqrt{a+b x^2}}-\frac{21 b^{5/4} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{10 a^{11/4} c^{7/2} \sqrt{a+b x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0128172, size = 59, normalized size = 0.18 \[ -\frac{2 x \sqrt{\frac{b x^2}{a}+1} \, _2F_1\left (-\frac{5}{4},\frac{3}{2};-\frac{1}{4};-\frac{b x^2}{a}\right )}{5 a (c x)^{7/2} \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((c*x)^(7/2)*(a + b*x^2)^(3/2)),x]

[Out]

(-2*x*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[-5/4, 3/2, -1/4, -((b*x^2)/a)])/(5*a*(c*x)^(7/2)*Sqrt[a + b*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.018, size = 219, normalized size = 0.7 \begin{align*} -{\frac{1}{10\,{x}^{2}{c}^{3}{a}^{3}} \left ( 42\,\sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{2}\sqrt{{\frac{-bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{-{\frac{bx}{\sqrt{-ab}}}}{\it EllipticE} \left ( \sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}},1/2\,\sqrt{2} \right ){x}^{2}ab-21\,\sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{2}\sqrt{{\frac{-bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{-{\frac{bx}{\sqrt{-ab}}}}{\it EllipticF} \left ( \sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}},1/2\,\sqrt{2} \right ){x}^{2}ab-42\,{b}^{2}{x}^{4}-28\,ab{x}^{2}+4\,{a}^{2} \right ){\frac{1}{\sqrt{cx}}}{\frac{1}{\sqrt{b{x}^{2}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x)^(7/2)/(b*x^2+a)^(3/2),x)

[Out]

-1/10/x^2*(42*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(
-a*b)^(1/2))^(1/2)*EllipticE(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*x^2*a*b-21*((b*x+(-a*b)^(1/2
))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticF(((
b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*x^2*a*b-42*b^2*x^4-28*a*b*x^2+4*a^2)/(b*x^2+a)^(1/2)/c^3/(c
*x)^(1/2)/a^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{2} + a\right )}^{\frac{3}{2}} \left (c x\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(7/2)/(b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)^(3/2)*(c*x)^(7/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b x^{2} + a} \sqrt{c x}}{b^{2} c^{4} x^{8} + 2 \, a b c^{4} x^{6} + a^{2} c^{4} x^{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(7/2)/(b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^2 + a)*sqrt(c*x)/(b^2*c^4*x^8 + 2*a*b*c^4*x^6 + a^2*c^4*x^4), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)**(7/2)/(b*x**2+a)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{2} + a\right )}^{\frac{3}{2}} \left (c x\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(7/2)/(b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((b*x^2 + a)^(3/2)*(c*x)^(7/2)), x)